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Multiple Scatter Cross Sections for 
Anisotropic Kolmogoroff Turbulence 

I.   INTRODUCTION 

1* In a recent report on backscattering from anisotropic media,      we developed 
a method for calculating multiple scatter cross sections based on DeWolf's 

o cumulative forward-scatter single-backscatter approximation.     Tne method con- 
sisted of obtaining an expression for the scattered wave in terms of the Green's 
function for a wave propagating in an arbitrary random medium.   From thiSj an 
expression for the power scattered into an arbitrary direction was obtained.   The 
scattered power obtained from averaging over the random properties of the medium 
was then expressed as the Fourier transform of a cumulant expansion of the corre- 
lation functions for the random medium.   To evaluate the Fourier transforms, the 
cumulant series was further expanded as a functional Taylor series in terms of 
the projected correlation functions (structure functions) of the medium.   Fourier 
transforms of products of arbitrary powers of correlation functions projected 
along the incoming and scatter directions were then expressed as convolution 

(Received for publication 7 February 1985) 
*This report will hereinafter be referred to as "I." 
1. Yukon, S. P. (1982) Backscatter From Anisotropic Random Media, 

RADC-TR-82-287. 
2. DeWolf,  P. A. (1971) Electromagnetic reflection from an extended turbulent 

medium. Cumulative forward-scatter single-backscatter approximation, 
IEEE Trans.  Antennas Propag. AP 19:254. 



integrals.    For Gaussian correlation functions, the required integrations could be 

evaluated analytically.   This calculation was carried out in I. 
3 4 5 Many measurements of ionospheric irregularity fluctuation spectra '  *    sup- 

port some form of power law for the fluctuation spectrum and for such power law 
spectra, the convolution integrals cannot, in general, be evaluated analytically. 

Therefore, one objective of this report will be to evaluate multiple scattering 
cross sections for fluctuation spectra that cannot be convolved analytically and 
for the three-dimensional Kolmogoroff spectrum in particular.   We will also 
extend the cross section calculation in I to include scattering into forward direc- 
tions and scattering from slabs containing irregularities whose symmetry axes 
are oriented at an arbitrary angle with respect to the slab face. 

2.   CROSS SECTION FOR FORWARD SCATTERING 

The only formal difference between the calculation of scattering into forward 
directions and scattering into backward direction lies in changing the path length 
for the scattered wave as it appears in Eq. 1-45.   Thus, the expression for the 
backward-path length x/J. should be replaced by the path length (L-x)y8.  which 
represents the path length from the scatter site on the plane located x units of 
length from the front of the slab to the back of the slab at L.   Integrating over the 

volume of the slab yields the analog of Eq. (1-46). 

\ x0. [D.(4r)-l] + [L-x]0.  D.(4?)-l] 
J  dxe      *     x '     l 

Lfi. [D.(dr*)-lJ L/J-[D (dr")-l] 

.[AL]   - ~  (1) 
L/9. [D. <<!?*)-1]   -    L/Sf[Df(4r")-l] . 

3. Erukhimov, L. M., Kosolapenko, V. I., Lerner, A.M., and Myasnikov, E. N.. 
(1982) Form of the inhomogeneity spectrum of the high-latitude ionosphere 
in the direction of the geomagnetic field. Radio Phys. Quart. Electronics 
24:350, 

4. Kelley, M. C., Livingston, R.C., Rino, C. L., and Tsunoda, R.T.  (1982) The 
vertical wave number spectrum of topside equatorial spread F: Estimates of 
backscatter levels and inp lications for a unified theory, J. Geophys. Res. 
87(A7):5217. 

5. Ossakow, S. L. (1979) Ionospheric irregularities. Rev. Geophys. Space Phys. 
17:521. 



To expand this as a double functional Taylor series in D^0r) and Df (4r), we 

first define vi  =  L/S.   D. (4r), c. = L/3. and an equivalent vf. cf with the sub- 

script f replacing i.   The Taylor expansion is then given by 

vi * ci      Jt - Cf - e 
[AL]  n?0    hk +  Vf 4]    ^ C<*i - «1> - <*f - «!> Vf - 0 (2) 

Exp anding the bracket using the binomial theorem yields 

[v] 

-c -c 
e       -   e n! •       n       i 

(e   - c )       +   *"      r-*      n^   (n-i)' i' vci     cr n=l    j=0     n-   vn ]'  ]' 

• v.^v/ >v.n-J    ev/   yC^-c.HVf-c.)]/ yrf-<M 
(3) 

Writing v_= v. - v. and c_ = c. - c,, the derivative term maybe rewritten as 

an-j      /   v„ -   c 
aJ 

dv. 

vf-cf en-3      /v.-   c.v 

av^-i V(v.-c.) / H • vf " 0 

an-j        /y. - c.   \ 

avin"j   \   v-"   c-/ 

i ji 
e    f(-l)k 

k= 0        (j-k).'k! 

.n-j+k 

av n-j+k 

ev-"c-.l 

v_ - c. 

V£, v." 0 

v    = 0. (4) 

Using the result of Eq. (1-53), this may be re-expressed as 

3 j! £    —-— 
k=0      (j-k)!k! 

-cf        R       y(n-j+k+l, ct - cf) 
(«) 



Comparing Eqs. (3) and (5) with Eq. (1-54) shows that scattering into the forward 

direction will be given by Eq. (1-54) 

with 

-P£.          -/3.L 
e    '      -  e  

</?.-j3f)L 
(6) 

replacing 
r        -<A+0f> Li 

1 - e      x       l 

L   <0.+0f)L 
(7) 

and 

7(n + l.j; <£.- 0f)L) L.       e    !  (-iry(n-j+l.(/3.-0f)L) 
k=0     (j-k)!k! 

{(^-^)Lj j-k (8) 

replacing 

r(n+ 1. (/3i + /Sf)L). (9) 

In calculating cross sections thus far, we have assumed that k L   » 1 
where L   is the smaller of the inertial scale lengths (L„ , LA ), and that the 
cumulative forward-scatter single-backscatter (CFSB) approximation holds.   This 
is a good approximation for scattering into backward directions.   However, for 
forward directions, it is possible that double and higher order scattering with 

angles larger than  $    = 1/k L   may contribute appreciably to the cross section. 
DeWolf has calculated that, for a single back scattering, the ratio of scattered 
intensity outside a cone of half angle #D to the intensity inside the cone 
1(9 > 0D)/H0 <  0D) is approximately given by (2kQLo sin   0D/2)"5/3.   If this 
ratio is still small for forward directions, the single scatter CSFB approximation 
should be adequate.   As an example, if we require this ratio to be no greater than 

2. 0 and   6C • (K0\) -1 _2 
10    , this would imply, for the choices of K    = 8n,    L 

1.14° , that #D = 18.1° .   Thus we should be reasonably safe in pressing the CFSB 
into within, say, 36°   of the forward scattering direction for this choice of para- 
meters. 



Comparing Eqs. (3) and (5) with Eq. (1-54) shows that scattering into the forward 

direction will be given by Eq. (1-54) 

with 

-/?jL -/y- I 

(0t-0f)L 
(6) 

replacing 

1 - e 
•(PL + Pt)   L- 

L   <0.+0f)L 

and 

(7) 

y(n+l.j;(ft -0P»L)  -    £       e    *   (-iry(n-j+l.(S.-ft)L) 
1       ' k=0     (j-k)!k! x    ' 

.[(/S.-^f)Lj i"k <8) 

replacing 

y(n+ 1, (0. + /8f)L) (9) 

In calculating cross sections thus far, we have assumed that k L   » 1 

where L   is the smaller of the inertial scale lengths (L„ , LA ), and that the 

cumulative forward-scatter single-backscatter (CFSB) approximation holds.   This 

is a good approximation for scattering into backward directions.   However, for 

forward directions, it is possible that double and higher order scattering with 

angles larger than  6C~ 1/k0
L

0 
may contribute appreciably to the cross section. 

DeWolf has calculated that, for a single back scattering, the ratio of scattered 

intensity outside a cone of half angle 6-~. to the intensity inside the cone 

Hd > 0D)/H0 < 0D) is approximately given by (2kQLo sin   ^D/2)"5^3.   If this 

ratio is still small for forward directions, the single scatter CSFB approximation 

should be adequate.   As an example, if we require this ratio to be no greater than 
-2 -1 

10    , this would imply, for the choices of K   = 87r,   L   = 2.0 and   $   « (K L )    = 

1.14° , that #D = 18.1° .   Thus we should be reasonably safe in pressing the CFSB 

into within, say, 36°   of the forward scattering direction for this choice of para- 

meters. 



3.   KOLMOGOROFF SPECTRUM OF TURBULENCE 

The choice of a Gaussian spectrum of turbulence in I made it possible for 
all convolution integrations, such as that in Eq. (I. 61) to be evaluated analyti- 
cally.   For power law spectra and spectra having more complex functional forms, 
numerical integration will generally be required.   For these cases, a further 
distinction may be made depending on whether or not the projected correlation 

functions to be convolved in the k -k   plane can be transformed into functions 
having circular symmetry.   For functions that can be represented this way, the 
cross section calculation may be structured so that the set of multiple convolu- 
tions of the projected correlation function   <Dj (k)>   become independent of X- 
and need to be calculated only once; the X, and X, dependence is thus transferred 
to another, simpler part of the integration. For correlation functions that cannot 
be transformed to circular symmetry, numerical evaluation is more costly, since 
the set of projected correlations JD.(lc)> will, in general, depend on A", as well as 

on k   and k   separately. x        y 
Since our main concern is in studying the effects of multiple scattering from 

physically realizable turbulence, we will concentrate on spectra having the power 
law form given by Eq.  (10). 

*3d(k) 

where 

«3 

W^k* u2]uv 

2   L„ Lir(«/+D 
47T   

r(3/2)/->-l/2) 

(10) 

(11) 

is the normalization constant for 4>    (k) defined by the condition #     (r=0) =1. 
For such spectra, analytic evaluation is a reasonable possibility, but only 

if v equals an integer or half integer.   Fcr   V, an integer or half integer the 
convolution integrals may be evaluated straightforwardly by contour integration. 
However, even for the simplest case of   V =   1, the proliferation of terms for 
higher order convolutions makes this a tedious procedure.   For the Kolmogoroff 
spectrum with   V = 5/6, the convolution integrations are best carried out numer- 
ically.   To accomplish this, we suggested in I representing the Kolmogoroff 

spectrum as a sum of Gaussians.   This allows all of the convolution integrals to be 
evaluated analytically, yielding a new sum of Gaussians as the result.   Upon try- 
ing this approach, however, we found that the series converged slowly, and that 
such a large number of terms was needed to represent the Kolmogoroff spectrum 
adequately that no advantage could be gained over direct numerical integration. 

,T, »-. \.-«•.— >*"" •;>"."• !."• V- V :L"» wv«> v> ~->"j~-ti.""*';r-". >v>. 'i"-\ >'-"«*. v\-. I 



To evaluate; the convolution integrals for the cross section [Eq. (I. 54)]  most 

efficiently, it is advantageous, as pointed out in I, to use the delta function pro- 

jection operators appearing in the projected correlation functions   D.  . [Eq. (I. 39)] 

to integrate out the z components of momentum.   The resulting convolution inte- 

grations are then confined to the k , k   plane.   Using th j results of the theorem x     y 
proved in I (Appendix C), all convolutions of the projected correlation function 

based on Eq. (10) such as 

?«-/• if (k)   =   |  -     Dn 1 (k-k ') D.   <k' ) (12) 
(2irf        x l 

mav be written in the k , k   plane as x     y 

°i  *M-  k2>      "  f ~~2   5i_1 < <kl V 4 <k2-k2>2)Si(k'l2*?'   *2 2>       <13> 
J    (27T) 

where 

if   =   1 + T}2 tan2 (Xt),   77 = L,j/LJL. (14) 

and where   D.(k) is defined through the relation [Eq. (I. 56)] 

D.(k)   =   D.(kj.)    <5(k   . K.)   27TK (15) 

as 

*2i 2  „2   , 2.        !T 2d, ix 

Di(ki)=   D.(k* i*   kp   =  ^.""(kji.,^)^ 
[l+kJ(iJLJ^+^lS]W   (16) 

with 

K2. =   4TT(LJ. je.JL^J/. (17) 

The normalization constant K~. is defined by the condition that $    (rx= 0) = 1 

which yields Eq. (17) when used with scale lengths Lj =   XXX ,L.«Li,   The 

path dependent attenuation constant ct;^, defined through the relation  [Eq. (I. 39)] , 

is given by 

v*i"\^".*''.''\:i '.* O v" -i-"T-L.v~V^V*T»-"".v '^. ~!V *V •%^"** >^v V\.V« -•-'•^."**^-?i^i"«*'."**->1''.' ^-~-*-V':r^^".^>•*^'^">•'^^V'^•v, 



K2   6e2 K3 . 3 

40(2n-JijLx cos (X±) 
(18) 

In terms of dimensionless variables px   =  k x Lx Eq.(13) maybe re-expressed as 

5%dJ*J* = tl/(^2 i>r1(<Pi-ei>24 (p2-P2'2»Si(pf 'i8.P22>- 

By rescalingthe p. momentum coordinate, we can ffewrite Eq. (19) as a two-dimen- 
sional convolution of circularly symmetric functions.   Thus, with the coordinate 
transformation 

Pl '' pl H'   P2 = H (20) 

and defining 

f2i <2i 

2    ,211+f [i+P?]1+"   [npj + P; if] 
D.(p) 1 It (21) 

we have 

D^(Px) 

D°(px) 

(xx^r1 (22) 

The multiple convolution products for the scaled projected correlation function 

will then be given by 

/dPi 
D? * (<px- p'xr) D.(P/)  — 

1 1 (2 7T 
(23) 

Using the results of the Appendix for convolving two circularly symmetric 
functions, Eq. (23) may be written equivalently as 

27T 

ifr (P2 )   - f j     IX     [P\ + Ox - 2PX Qx cos (0Q ) )D.(Q2)QxdQxd<ftQ    (24) 

(2 7T)2 o    o 

2^S£^&& /^i^i^;^^ 



_J    r dcr    7 
= <2^>2 I    2     h 

dQ2     Q-2=(Q+P)2       D^1(Q2)Di(Q'2)dO'2/2 

'Q'2=(Q-P)2      [(Q+P)2 -Q"2]1/2[Q -(Q-P)2]1/2    (25) 

or 

=   /    QdQ   /    s-  Dn X (Q^) D. (C^)      (26) 
Jo Jo    (2?rr       * i A 

where A(Q + Q* - P)   =   1 if 0, Q', and P form the sides of a triangle of area A 
and zero otherwise. 

By making the coordinate transformation given by Eq. <20), integration of 
a general term such as   Eq. (1-60)  can be re-expressed as 

ff-^hf dk>     D?"J (k)<<S€2(k-k' -K. +KJ>DJ(k) (27) JJ (27r)6 i ,     1       f        f 

* *   *       ^i*. 
dpjdpgdqjdqg  ^      + 

'MS      {Lx)4(2ff)4    ^(P.Xa^tp-q-K.+K^DJ^)!^ p^-K^ 
iz 

•+•   •+ 

q    *%B* z       Kf2 

"       dP1dP2d01dQ2        D.n-J(Pa)      ttf(Qx) 

it 4f (LA)4(2^)4 ijH"1 ij-^L2)""2 

2   P O -     * 
•<de  (77.   P2.   7

1.   Q2. K.. Kf)>. 

The -V. and -^f dependence of the integrand has thus been transferred from 
vn-i vi the arguments of D.   J and  D* , where it appeared in the form of the scale factors 

^and   £f, to the term <dc2>.    The factors &~n+i   *.'$   Ll2n will be cancelled 
when account is taken of the terms   K L1"3 ifJL      appearing in  Dn"J     .     D^ . 

For spectral correlation functions that do not lead to circular symmetry in 
the scaled k -k   plane after integration over the k   projection delta function, x    y z 
such as the factored #KG of Eq. (1.30) below: 



•KG^   =^     L» e [l +k2L   2]1+"     ' <28) 

each D^ (p.,p„) will be a function of Jf. and of p, and p„ separately.   While the 
time required to evaluate a look-up table of values for the non-circularly symmet- 
ric D. (p., p„) functions is roughly equal to that required for the symmetric ones, 
the storage requirements will be much larger since the circularly symmetric 
structure functions D. (P) depend only on one variable P=   [ Pj   +PjJ    ' 
(aside from the easily factored dependence on X* stemming from *f£ ). 

In the following sections, we shall discuss the results of numerically evaluating 
the multiscatter cross section for 0   given by Eq. (10).   We have omitted the 
evaluation of multiscatter cross sections using the mixed representation Eq. (28) 
simply as a matter of economy.   If we neglect multiscatter contributions, however, 
the attenuated Born cross sections for the Gaussian [Eq. (1.29)].Kolomogoroff 
L Eq. (10)1 and mixed [Eq. (28)] spectral correlation functions can be readily 
compared and are shown in Figure 1 for transverse and longitudinal scale 
lengths of Lx   =   I, Lu  =4 and wavelength X = 1 for X* = 45° .   At the angle for 
specular backscattering Xf =  135° , we have 4K   = 0.   Thus, the magnitude of 
the backscattering peak will be controlled by the magnitude of 4Kx • LA    and the 
overall Eayleigh (2nr/A)    factor.   A change in wavelength from A.= 1 to A= 1/2 
will entail an approximate 25 orders of magnitude decrease in the Gaussian cross 

section, whereas the two Kolomogoroff cross sections are virtually unchanged 
due to the K   Rayleigh prefactor increase balancing the (1+4K ± Lx) 
denominator increase.   In the forward direction, both  4K7 and 4KL are zero, 

4 and the peak cross section values are determined by the Rayleigh K   behavior. 

4.   SLAB GEOMETRY 

In I, the symmetry axis of the irregularities was chosen to be parallel to the 
face of the slab.   It is a straightforward matter to modify the cross section calcu- 
lation to account for a geometry having the irregularities aligned at an arbitrary 
angle with respect to the face of the slab. 

For the general case shown in Figure 2, we start from the situation of a 
horizontal slab with irregularities aligned perpendicular to the slab face and then 
define a tilt angle a that defines the rotation of the symmetry axis of the irregu- 
larities in the xz plane away from the z axis, and a rotation angle /S that defines 
the rotation of the projection of the irregularity in the xy plane clockwise from the 

;^:^:^^^ -*v ^AAAA?:,-:^. 



90.0 
ANGLE 

120.0 150.0 180.0 

Figure 1.   Logarithmic Plot of Attenuated Born Cross Sections vs Xf for the 
Gaussian (*).  Kolmogoroff, and Mixed Correlation Functions (Y) With K = 27T, 
L = 1.   T] = 4,   6 C = 0.01 
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Figure 2.   Geometry of Scattering Angles With Respect to a Fixed Slab 
With Rotated Irregularities 

x axis.   The path length factor s.(x)   will now be replaced by 

s'^z)   = 
1008(^)1 

(29) 

with z measuring distance into the slab.   The path-dependent attenuation and the 
scattering cross section can now be found by expressing the wave vector components 

* In I, the angle X in Figure Al was mislabeled.   It should be the angle ACD 
yielding an expression for the path length Eq. (1.43) s(x)=x/ |cos(^)sin(X,)|" 
AC.   fThi3 will not entail a change in the numerically computed curves in I 
as  <t>., j was taken to be 0 or TT for all cases). 
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parallel (K„) and perpendicular (Kj 2) to the irregularities in terms of two coor- 
dinate rotations through angles a   and f$. 

Thus we have 

Kj = Qj* cos a + Q3' sin a 

K2 * S* 

Kg = -Qt 'sin a   + Qg 'cos a (30) 

with 

Qj* = Qx cos 0   - Qy sin £ 

Q2' = Qx sin fi   + Q   cos £ 

Q, O. 

where  {Q^. Q . Qzf =  {K sin (0) cos (^). Ksin (0) sin (#). K cos(0)} are the 
components of the wave vector with respect to the slab with rotated irregularities, 
and   {Kj. K2. Kg} =   JK sin (X) cos (<f>), K sin (X) sin (<t>), K cos (X)} are the 
components of Q. or Q. with respect to the irregularity.   The steps required to 
determine a~Z. Q   (Of,/?) for the general case of scattering from a horizontal slab 

with rotated irregularities are: (1) for given Q. and Q*, use Eq.  (30) to find the 
* •*• • IT r "*• 1 corresponding K. and K.; (2) use the results of Eq. (1.40) to find       Ot v   [Q. J 

--•-,11 ->•-»• "• *     l 

and   « Xi LQj J» (3) according to whether CX and Qf are on opposite sides or the 
same side of the slab, use [along with 5.1 for s'.  f(z)] Eqs. (6) and (8) or Eqs. 
(7) and (9) for the attenuation and  7 factors; (4) determine 

"Q.. Qf 
(a-^ -  "KCQ.J Kf [Qf ] {%. f L% 11'   y tQi. f]>' (31) 

As an example of the effect of rotating the irregularity axis on the multiple 
scattering cross section, we take  j8 = 0 and evaluate ° o., Q\ for various values 
of Of for the Kolmogoroff spectrum.   Assuming that initial and final wave vector 
are confined to the   <f> = 0 (x-z) plane, we may redefine the ranges of X- f    and 
9. , to extend to    ±2i. 

In this plane, we then have the relation 
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X. = a + $ . 
i i 

(32) 

and 

*f= a + d{ 

as shown in Figure 3. 
For specular scattering   it - X  =  X. - it  and from Eq. (32), this implies 

$f = -2«   - 0r (33) 

For  (Jj = 45° and for values of a = 0° , 30° , 60° and 90°, this yields expected 
outgoing angles for spectral scattering of  8* = 315°, 255° , 195° , and 135° 
respectively. 

\\\\\\\ 

Figure 3.   Geometry of Scattering Angles With Respect to a 
Fixed Slab With Rotated Irregularity Axes for;3= 0 
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Xn Figure 4, we have plotted the total cross section   <TQ   Q (a, fi »0) vs 0. 

for values of a = 0° , 30°, 60°, and 90* for a slab with L= 1,   rj = Ln/L± = 4 
with K = 4n* for Kolmogoroff turbulence.   The spectral peaks appear close to their 
expected values.   While there will be narrow ranges near  0f = 90° and 270° where 
the cross section will vanish due to attenuation in an effectively infinite slab, the 
decrease in  o£ » o for the ranges of approximately   ± 10° on either side of 

wi   wf 
these grazing angles does not show up.   This is caused by a near cancellation 
between the attenuation of the Born term and the added contribution of multiscatter 
terms with n   >   1 as can be seen in Figure 5 where the two contributions are 
plotted separately. 

>' 

A. 

5.   NUMERICAL RESULTS FOR MULTISCATTER CROSS SECTIONS 
• i 

In this section, we present numerical results of multiple scattering cross 

sections as a function of the polar angle X. for various values of   >7 =    .     L» 

K, and X..   Thete results extend the calculations of I to forward directions as 
discussed in Section 2 and to the case of the Kolmogoroff spectrum as discussed 
in Section 3.   For all cases considered, we assume scattering from a slab of 
irregularities with the long axis of the irregularities parallel to the slab face 
(a = 90°   /? = 0).   In keeping with the angle designations of I, we shall plot cross 
sections vs  X..   For purposes of displaying results, we define A"-to be negative 
in the forward direction,   X, = |*f|for   tf>f = 0. 

In Figures 6 and 7, the logarithm of the total scattering cross section a •%., y. 
is plotted vs ^. for the Kolmogoroff and Gaussian spectral  functions 
respectively.   In the forward direction, the Kolmogoroff cross section is seen to 
satisfy the requirements of the forward scatter approximation better than the 
Gaussian in that the cross section falls off much more rapidly as |^- - % 11 
increases.   Around the specular backscattering peak, it is the Gaussian cross 
section that falls off most rapidly as a function of x~.   This behavior can be readily 
understood in terms of the derivatives of the corresponding spectral functions. 

i, 

3 

~dX~ in *Q = -Y{&
K

I. 
COS

 WfJ cos ^i-#f> L* " AK« sin (Xf] L||2| 

-QY 4n<k = -      K       [AKj. cos (Xf) cos (#.-<^) Lx  - AKn sin (x) L„  J 
f il+V) {1+4K2L2 +4K„2Lll2| 

(34) 

(35) 

In the forward direction,   4KX is small,   4Ka  =   0, and the slope of the 
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0.0 60.0 120.0 180.0 
ANGLE 

240.0 300.0 360.0 

Figure 4.   Logarithmic Plot of Total Cross Section vs Of for Irregularity Tilt 
Angle a = 0° (+),   a = 30° (x),  a = 60° (0).  and a = 90° (O With K = in. L = 1. 
T) = 4,   6e = 0.01 
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0.0 60.0 120.0 180.0 
ANGLE 

240.0 300.0 360.0 

Figure 5.   Logarithmic Plot of Born (*).  Multiscattering (V), and Total Cross 
Sections vs Xf for Irregularity Tilt Angle a= 60° With K = 47T, L = 1,  n = 4, 
«€ = 0.01 
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•90.0 -60.0 -30.0 0.0 
ANGLE 

30.0 50.0 90.0 

Figure 6.   Logarithmic Plot of Total Cross Sections vs Xf for Kolmogoroff 
Turbulence for 17= 2<+),  r\ = 4(x),   T) = 8(0). and 7] = 16(f) With K = 2n, L = 1, 
6e = 0.01 
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-90.0 -60.0 0.0 
ANGLE 

90.0 

Figure 7.   Logarithmic Plot of Total Cross Sections vs Xf for Gaussian Turbu- 
lence for n - 2(+).   T) = 4(x),   Tj = 8(0),  and V = 16(f) With K = 47T/3, L = 1.0, 
5e = o.oi 
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Kolmogoroff curve is approximately four times that of the Gaussian 

s ^-ln*K^2.(l + V)^ln*G   . (36) 

The factor in brackets in the numerators of Eqs.  (34) and (35) can be rewritten for 

the backscattering case (<t>. = 0, <f>^ = IT) as 

[4KX cos(xf)L2
x   - dKn sin(xf)L?,] (37) 

-2K sin JS +ArflC0S (XJ ~ xA cos(xf)L2x -   sin fa- Xt\ sin(Xf)Li 

2 2 For L||   » Li » this term will have two zeros, one near %   = 0 and one near the 

specular direction %- = %. . 

As T} is reduced, the peak near the specular direction will move into lower 

Xc while the nunimum at X r = ® w*^ move out«   At some value of JJ(8 < *? < 16 
for the examples shown), the peak and minimum will merge and disappear.   This 

behavior can be seen for both the Kolmogoroff and Gaussian spectra.   In the case 

of the Kolmogoroff spectrum, the extra term in the denominator of Eq. (35) 
K C 

implies that the slope of In a    will be smaller than that for In a    by 2(1+ v)l [ 1 + 

AK\ lA   +,dK||2Li|2 ] which is approximately 2(1+5/6)/[l + 2K2] * 1/14 for the 

parameters of Figure 6. 

The equal spacing in the values of the amplitudes at the scattering peaks in 

Figures 6 and 7 reflects the multiplicative factor L.H in the normalization constants 

for 4>Q and 0K .   Since the increments in LII in Figures 6 and 7 proceed by fac- 

tors of 2, the increments in <rK and   a-, at their peaks will be additive in incre - 

meats of log 2. 

In Figures 8 and 9, we have plotted the multiple scattering cross sections for 

the Gaussian and Kolmogoroff spectra for increasing values of K.   For the 

Gaussian case shown in Figure 8, we have plotted the total cross section for L=l, 

T} = 4, and for K taking values of 1.5 It, 2 n, 2.5 n, 3 IT, and 3.5 n .   At the 

position of the forward peak, since the scattering slab is relatively thin and 

AK = 0, the K dependence of the scattering cross section is determined by the 
4 ' 

Rayleigh K   factor.   At the backscatter peak, as pointed out in I, the cross section 
2      2 2      2 is dominated by the exponential factor  _-(_lKx Lx + _K||   Ln)/4.       Thus for 

-23 K = 3.5 7T the value of the Born contribution to the backscatter peak is 0.17 x 10 
-22 while the multiscatter contribution there is 0.18 x 10      .   Because the CFSB 

approximation depends on satisfying KL »  1, the Gaussian spectrum offers little 
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•30.0 0.0 
ANGLE 

30.0 60.0 

Figure 8.   Logarithmic Plot of Total Cross Section vs Xf for Gaussian Turbu- 
lence for K = 1. 57T(+),  K = 27T(x),  K = 2. 57T(0),  K =• 3ir(\h  and K = 3. 57r()<) 
With 17 - 4, L = 1.0,   JC - 0.01 
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•90.0 -60.0 -30.0 0.0 
ANGLE 

30.0 60.0 90.0 

Figure 9.   Logarithmic Plot of Total Cross Section vs Xf for Kolmogoroff Tur- 
bulence for K = 47T{+), K = 67r(x).  K = 8ir(0), and K = 107r(f) With 7) = 4. L = 10, 
6€  = 0.01 
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of interest in the region of specular scattering.   The backscatter cross section 

there for large KL is practically zero. 
In Figure 9, we have plotted the total cross section for scattering from 

Kolmogoroff turbulence with   V = 4, L = 10, and for K values of 4 it. 6 n , 8 TT. 

and 10 IT.   For these values of K and L, the forward approximation is adequately- 
satisfied.   In the forward direction, the scattering peak is determinedby the 

4 Rayleigh K   factor modified by attenuation because L=10 represents a relatively 
thick scattering slab.   At the specular peak near Xf • 40° , the value of <*K is seen 
to change by a relatively small amount as a function of K.   For the Born contri- 
bution this behavior is caused mainly by K/[l+4KALiJ ~ K ' 
as K increases (modified by attenuation e"         with a°c K ).   The multiscatter 
contribution increases roughly as a, and, for K = 10 IT , can begin to dominate 
the Born contribution.   This is shown in Figures 10 and 11 where we have plotted 

the Born and multiseatter contributions for K = 10 IT  and K = 4 7T . 
It should be pointed out that the CFSB approximation is also limited to domains 

where OL   <  7r/2.   Since the average phase variance is given by < #    > = 
aL

eff , the point oL^  =   TT 12 marks the beginning of the diffusion regime where 
transport theory must be employed.     This boundary will always be crossed for 
scattering at near grazing angles to the slab, since the effective path length L ff 

-» • for y - = 0   [d- =    TT/2] .   As K increases, this domain is bounded by 

± 4° ,    ± 9° ,    ±14°  and    ±20° for K = 4 7r , 6 IT , 8 xr , and 10 TT respectively 
for the Kolmogoroff cross sections of Figures 9, 10, and 11. 

In Figures 12, 13, and 14 we have plotted the attenuated Born and multiple 
scattering contributions for the Kolmogoroff spectrum for  V = 4, K = 8 7r , and 
for L = 0.1, 1, and 10.   For the thin slab case of Figure 12, the multiscatter 
contribution is less than 1 percent of the total except in the region around the 
grazing angle at \ t ~ °° •   Here the Born term decreases because of the attenua- 
tion factor given by Eq. (6) or (7), while the multiscatter term increases due to 
the increased effective path length.   For the medium thick slab of Figure 13, this 
behavior persists, except that very near %. = 0°, attenuation begins to dominate 
the multiscatter term,   For the thick slab case of Figure 14, the multiscatter term 
is comparable to the attenuated Born term, and the domain where attenuation 
dominates the multiscatter term near ^- = 0°  has increased.   The angular domains 
where diffusion scattering is appropriate are given by (-2° , +2 °) for the case 
L = 1, and (-15°, +15° ) for the case L = 10. 

The dependence of the total multiple scattering cross section on ^.is shown 
in Figure 15 for the case   ?7=4, L = l, K = 27r for incident angles of X $ - 15°, 
45°, 75° , and 85° .   A feature to be observed for the X, dependence, as pointed 
out in I, is that the curves peaked around smaller values of \X$\ are broader 
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-90.0 -50.0 -30.0 0.0 
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30.0 60.0 90.0 

Figure 10.   Logarithmic Plot of Born (*), Multiscattering Of), and Total Cross 
Sections vs Xf for Kolmogoroff Turbulence for K = 107T.   r\ = 4, L = 10,   de = 0. 01 
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-90.0 0.0 
ANGLE 

60.0 90.0 

Figure 11.   Logarithmic Plot of Born (*),  Multiscattering (y), and Total Cross 
Sections vs Xf for Kolmogoroff Turbulence for K = 47T,   T] - 4, L = 10,   6€ - 0.01 
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-90.0 -60.0 -30.0 0.0 
ANGLE 

30.0 60.0 90.0 

Figure 12.   Logarithmic Plot of Born (*),  Multiscattering (Y). and Total Cross 
Sections vs Xf for Kolmogoroff Turbulence for K = 87T,   I?» 4, L » 0.1, 0€ • 0.01 
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-90.0 -60.0 -30.0 0.0 
ANGLE 

30.0 60.0 90.0 

Figure 13.   Logarithmic Plot of Born (*), Multiscattering (Y% and Total Cross 
Sections vs Xf for Kolmogoroff Turbulence for K = 87T.   T) » 4, L - 0.1,   6( = 0.01 
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•90.0 •30.0 0.0 
ANGLE 

60.0 90.0 

Figure 14.   Logarithmic Plot of Born (*), Multiscattering (Y)» and Total Cross 
Sections vs Xf for Kolmogoroff Turbulence for K = &7T,   T) = 4. L = 10.    if. • 0.01 
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Figure 15. Logarithmic Plot of Total Cross Sections vs Xf for Kolmogoroff Tur- 
bulence for X; = 15° (+), Xj = 45° ($), Xj = 75° (0). Xt = 85° (4) With K = 27T, T) = 4. 
L = 1.0,    d€= 0.01 
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since we have plotted with an abscissa proportional to d y    rather than 

dK,   = sinCXJ • K • d w   .   Thus, increments of X{ near X^ = 0  yield smaller 

changes in dK.   and therefore broader peaks.   The observed decrease in the 
z 

magnitude of the peak in the specular backscatter direction where 4Kn    = 0, is 
governed by the factor 1/ [l + AK2

X   L|] l+V =   1/ [l + 4K2 sin2 6^ Lx 2]1+*' 
which decreases with increasing $,. 

6.   SUMMARY 

We have presented a method for calculating multiple scattering cross sections 
from slabs of arbitrary depth containing a homogeneous distribution of refractive 
index irregularities.   The irregularities are assumed to be aligned along a sym- 
metry axis at a given angle to the slab face and to possess different correlation 
lengths along and perpendicular to this axis. 

Previous calculations that have been carried out for multiple scattering cross 
sections have been limited to isotropic turbulence having a Gaussian power spect- 
rum and to direct backscattering.   The extension to anisotropic Kolmogoroff 
spectra and scattering at arbitrary angles thus presents a result that corresponds 
to the general situation encountered in scattering hf waves from ionospheric 
irregularities. 

For correlation functions that depend on a single radial argument 
R = V L (x- + x„ ) L x     + x, L H     J , projections along a given direction in the 
medium can be changed by a scale transformation to circularly symmetric form. 
Numerical evaluation of multiple scattering cross sections for turbulent spectra 
represented by such correlation functions can then be carried out relatively simply 
and were evaluated for an anisotropic Kolmogoroff spectrum. 

3 4 5 Measurements of ionospheric turbulence spectra '   *    tend to indicate a power 
—i/ 3 law spectrum k M   with    ft as 2-4.   Erukhimov et al   further indicate that the 

factored spectral form of Eq. (28) is supported by their data. 
We have noted that the loss of circular symmetry in the plane of the projected 

correlation function for spectral forms like Eq. (28) requires more extensive 
numerical calculation because the results of each convolution must be stored as an 
NxN array rather than as an Nxl array.   If, however, the initial and final scatter- 
ing angles are such that tan X,      »   2(LJL /Lil ), the projected correlation 

*f function 
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-k2 tan2<X )Ln 2/4 
»    e 

Ti ^T 2T      211+1/ LI +kjL   Lx    J 

can be approximated by 

v       -*                               f                        • -k2 tan2U)Ln 2/4 
Dv (k)  — -   " •••  

*                r, ^ ,   2T     2-.1+P 
e 

and the two-dimensional convolution integrals factor into two one-dimensional 
convolution integrals of which the Gaussian part can be evaluated analytically. 
Using Erukhimov's   values of L      ~ 0.5km and LH    ~ 10.0km the above 
analysis indicates that for X t     >  »v   20° the simpler one-dimensional convolu- 

i.f 

tion calculation should be adequate and would constitute an upper bound to the full 
numerical calculation of multiple scattering contributions. 
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Appendix A 

To show the equivalence of Eqs. (20), (21). and (22), we start from the 
expression for the two •'dimensional convolution of 2 arbitrary two-dimensional 
functions g(xj, x„), f(x-,x2) whose two-dimensional Fourier transforms 

g(p), f(p) exist. 

-»•-*• -• -*• -¥ 

d(ic) =   / eik"xf(x)g(x)dx 

-* £" **        .-*• *   •*• e      ,*t •*•   •*•        dq do 
.   /dx /    e*'x e-***fTq)     / e^%)   ^ ffiji 

(2 IT)
2
   *  6 (k-q-p)f<<i)g<p)d{idP 

=   /*_da. 
J (2 7T 

f(q)g(k-q). 

(Al) 

(A2) 

(A3) 

(A4) 

For functions f (p) and g(p) that depend only on the magnitude of p, this may be 
written as 

2TT 

d(k)    =1   s-     /   dA ffa^gfe^kqcosf^+q"). 
«/     (2 IT f oJ 

(A5) 

Going back to Eq. (A2), we may re-express this as 
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d(k)   = //fpdp pdpqdq /// d<£qd^pd<0 

eikpcos(^k-^>)  e-iqpcos(^q - <f> ) e-ippcos(#p -<£) 

f(q)g(p) /(2rr)4 

00 «° 

-    f P*P  ff PdPqd<1 <2 * )3 Jo¥ Jo{P P )Jo (kP > ?(q2) e<P2) 
<r      o*/(2 7r)4 

Integrating the Bessel functions over p, this may be written as 
00 00 

°/pdp J°qdq fV)g(P
2) 4(p + q-k) 

d(k)   = 
(2 7T   )' 

where   A (p + q - k) = 1 if p. q, k form the sides of a triangle of area A and 

(A6) 

(A7) 

(A 8) 

(A9) 

zero otherwise.   Expressing the area of the triangle as A = s(s-k)(s-p)(s-q) 
where s = k+p+q. this maybe re-expressed as 

d(k)  = 
^pdp  /qdq    f(q2)g<p2) 4<p + q-k) 

(2 IT )2 [s(s-k)(s-p)(s-q)] 
(A 10) 

=  fjB&-    J 
|p + k| 

qdq « <P2> S(q2) 
|p-k| [(P+k)2-q2]1/2[q2-(p-k)2]1/2 

(All) 

To show the equivalence of this expression with Eq. (A5) in another way, we 
let z=q2, a = (p-k)2. b = (p+k) , and re-express Eq. (All) as 
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m z=b 
~ -» __}  /      . ~    9 / 
d(k)    = (2 7T  )2      ./      Pdp     f<P   }      2   J     ' 

dz g(z) 

z=a 
>/(b-z)(z-a) 

Changing variables to z = b+z   + (b-a) x yields 
2 ~~2" 

x=l 

d(k) = (2 ir? /pdp?(p2) / 
dx 

pdpf(p°)      j       f—2 
x=-l   VI-xJ 

g(p2+K2 + 2pkx). 

Letting x = cos <f>  then gives 

27T 

S(k> = (2 n )2       j   ^P '(P2)  /    d^ g (p2 + k2 - 2pk cos <j> 

=   (2 7T   )2       / 

•which is Eq.(A5). 

(A 12) 

(A13) 

(A 14) 

dpx  f(P2)g((p-i^)2 ) 
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